

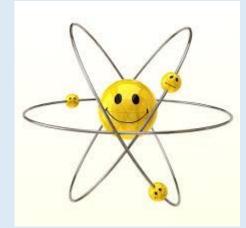
Welcome to A-level

Chemistry

Mr Howard Head of Chemistry KS5

Introduction

A-level chemistry is an excellent subject to study for many reasons.


• Interesting, diverse and is evident in everyday life

• Develops a wide range of skills

- Analysis and problem-solving.
- Time management and organisation.
- Written and Oral communication.
- Monitoring/maintaining records and data.
- Team work and Independent thinking
- Research and presentation

• Opens doors to a variety of careers/courses

- 'Facilitating subject'
- Needed for Medical and Veterinary courses (University)

Introduction continued

But:

- •Chemistry is a demanding A-level
- (often ranked in the top 5 subjects for A-level)

•GCSE Chemistry to A-level, will be one of the biggest leaps in your educational life.

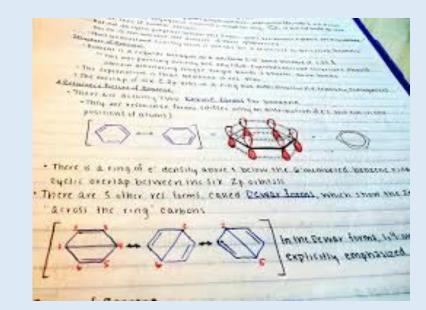
OCR A course structure & exams

Content Overview Content is split into six teaching modules: Module 1 – Development of practical skills in chemistry Module 2 – Soundations in		Assessment Overview	
		Periodic table, elements and physical chemistry (01) 100 marks 2 hours 15 minutes written paper	37% of total A level
•	Module 2 – Foundations in chemistry Module 3 – Periodic table and energy Module 4 – Core organic chemistry Module 5 – Physical chemistry	Synthesis and analytical techniques (02) 100 marks 2 hours 15 minutes written paper	37% of total A level
• Co	and transition elements Module 6 – Organic chemistry and analysis mponent 01 assesses content om modules 1, 2, 3 and 5.	Unified chemistry (03) 70 marks 1 hour 30 minutes written paper	26% of total A level
Component 02 assesses content from modules 1, 2, 4 and 6. Component 03 assesses content from all modules (1 to 6).		Practical Endorsement in chemistry (04) (non exam assessment)	Reported separately (see Section 5)

Topic Areas

- Atomic structure Amount of substance
- Bonding
- Energetics
- Kinetics
- Chemical equilibria, Le Chatelier's principle and Kc
- Oxidation, reduction and redox equations
- Thermodynamics
- Rate equations
- Equilibrium constant Kp for homogeneous systems
- Electrode potentials and electrochemical cells
- Acids and bases
- Inorganic chemistry
- Periodicity
- Transition metals

- Reactions of ions in aqueous solution
- Introduction to organic chemistry
- Alkanes
- Halogenoalkanes
- Alkenes
- Alcohols
- Optical isomerism
 - Aldehydes and ketones
 - Carboxylic acids and derivatives
 - Aromatic chemistry
 - Amines
 - Polymers
 - Amino acids, proteins and DNA
 - Organic synthesis
 - NMR spectroscopy
 - Chromatography


Assessed Practicals (PAG's)

- These test your practical skills on a number of key experiments
- Lab books to record work
- Develop skills and techniques
- Runs throughout the course
- 12 key practicals (at least)

Expectations

- Attendance needs to be good
 - Catching up on missed work is <u>essential</u>
- Attentive and focussed in lessons
- Organised
 - Folder and notes
 - Dates, subject, teacher
 - Clear and tidy (doesn't have to be pretty)
 - Filed
 - Punctuality
- •Homework (Essential practise)

<u>Assessment</u>

- Regular homework
 - Essential practise which identify strengths and weaknesses

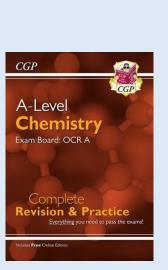
• PLC's (Personal Learning Checklists)

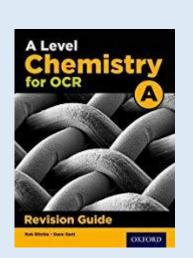
- Key ideas and concepts
- RAG rated to track learning

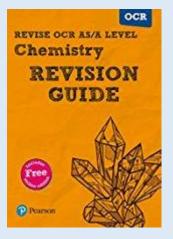
• End of topic tests

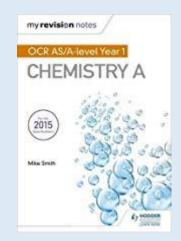
- Past exam questions
- Assessed against your target grades
- Feedback given to work on weaknesses

Oxford A Level Science


OCR Chemistry A


Atoms, ions, and compounds


Specification reference	Checklist questions	
2.1.1a	Can you describe isolopes as atoms of the same element with different numbers of noutrons and different masses?	
2.1.1 b	Can you describe atomic structure in terms of the numbers of protone, neutrons and electrons for atoms and ions, given the atomic number, mass number and any ionic charge?	
2.1.1 c	Can you explain the terms relative isotopic mass (mass compared with 1/12th mass of carbon-12) and relative atomic mass (weighted mean mass compared with 1/12th mass of carbon-12), based on the mass of a "C atom, the standard for atomic masses?	
2.1.1 d	Can you use mass spectromeiny?	
2.1.1 d i	Can you use mass spectrometry to determine relative isotopic masses and relative abundances of the isotope?	
2.1.1 d ii	Can you use mass spectrometry to calculate the relative atomic mass of an element from the relative abundances of its isotopes?	
2.1.2 a	Can you write formulae of ionic compounds from ionic charges?	
2.1.2 a i	2 a I Can you predict ionic charge from the position of an element in the periodic table?	
2.1.2 a ii	Can you recall the names and formulae for the following lons: NO, , CO, , SO, , OH-, NH, , Zn*, and Agr?	
2.1.2 b	Can you construct balanced chemical equations (including lonic equations), including state symbols, for reactions studied and for unfamiliar reactions given appropriate information?	


Resources

- Textbook
 - Oxford
- Revision guide
 - CGP
 - Oxford
 - Pearson
 - Hodder

Resources continued

• Websites

- Chemguide (<u>www.chemguide.co.uk</u>)
- Learnah! (<u>https://learnah.org/</u>)
- S-cool (<u>www.s-cool.co.uk</u>)
- A-level Chemistry (<u>www.a-levelchemistry.co.uk</u>)
- Snaprevise (<u>https://snaprevise.co.uk</u>)
- A-Level Chemistry Revision Notes (<u>www.a-levelnotes.co.uk</u>)
- Physics and Maths tutor (<u>https://www.physicsandmathstutor.com/</u>)
- Studymind (<u>https://studymind.co.uk/resource/ocr-a-level-chemistry/</u>)

chemguide

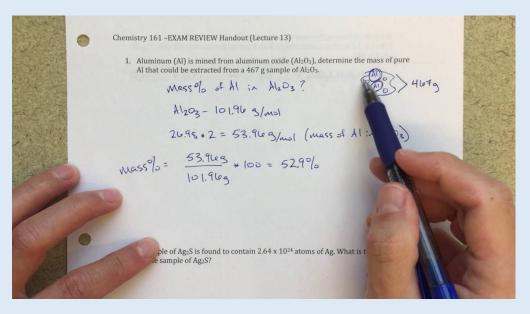
Helping you to understand Chemistry

MAIN MENU

<u>Keyword</u> searching	I have removed the Google search box because it was giving problems. Follow this link to find out how you can still search Chemguide using keywords.
<u>CIE</u> syllabus support	Support pages for CIE (Cambridge International) A level students and teachers.
Atomic Structure and Bonding	Covers basic atomic properties (electronic structures, ionisation energies, electron affinities, atomic and ionic radii, and the atomic hydrogen emission spectrum), bonding (including intermolecular bonding) and structures (ionic, molecular, giant covalent and metallic).
Inorganic	Includes essential ideas about redox reactions and

- Be prepared to ask questions (in and out of lessons)
- You can always email if you have an issue or a problem

• Work on problems together


Tips for success

- No substitute for hard work and commitment
 - Consistency is the key not a last dash cramming session
 - Both years are important (Not only Yr13)
- Read around the subject (textbooks and Internet)
 - Before a lesson read the section of the textbook to get a head
 - After the lesson file your work and re-read it through (do you understand what it says?)
- Questions When practising questions/re-reading material, make a note of these (post it, lists)

Tips for success

- Practise, practise, practise!
 - Exam questions
 - Study the mark schemes (Exam technique)
- Get comfortable with the Maths
 - Ask for help if this is an area you struggle

- GCSE Learn the material A-Level Understand and learn
- Regular revisiting/testing of your knowledge is essential

Tips for success

•Do not give up and Persevere!!

•You will not get every topic first time

"Don't be upset by the result you didn't get with the work you didn't do."

Any questions?

Email: mailto:mhoward@queenelizabeths.com

Or

Come and see me!